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In contrast with pseudo-gravitational effects that are mathematically analogous but
physically quite distinct from gravity, this presentation deals with a kind of quasi-
gravitational effect that can act in an asymmetrically moving brane worldsheet in a
manner that approximates (and in a crude analysis might be physically indistinguishable
from) the effect that would arise from genuine gravitation, of ordinary Newtonian type
in nonrelativistic applications and of scalar–tensor (Jordan–Brans–Dicke rather than
pure Einstein) type in relativistic applications.
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1. INTRODUCTION

In order to avoid confusion at the outset, it is to be emphasized that the concept
of quasi-gravity—in the sense used here—is quite distinct from that of pseudo-
gravity of the kind considered by authors such as Unruh (1995), Visser (1998), and
Volovik (2001). That kind of pseudo-gravity involves effects whose mathematical
description is more or less analogous to that of gravity, but whose physical nature is
quite distinct. Such effects typically involve another Lorentz signature metric that
coexists with the ordinary space–time metric (whose deviations from flatness are
interpretable as corresponding to true gravity) but couples to matter in an entirely
different way, specifying pseudo-light cones that typically govern the propagation
not of real light, nor gravity, but of some quite independent excitation such as
sound.

The purpose of the present contribution is to draw attention to something
rather different, what may be described as quasi-gravitational effects, meaning
phenomena that affect matter locally in approximately the same physical manner
as true gravity, even though their origin and detailed behavior may be rather differ-
ent. In the context of nonrelativistic Newtonian gravitation theory, the most familiar
example of such a quasi-gravitational effect is the centrifugal field attributable to
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the rotation of the earth that modifies the locally observable Galilean acceleration
field by contributing a term that is to be added to the strictly gravitational con-
tribution due to the Newtonian inverse square law attraction due to the terrestrial
matter distribution. Although this centrifugal quasi-gravitational contribution is
indistinguishable from the truly gravitational contribution in a crude laboratory
experiment, the difference is of course detectable, via the Coriolis effect, in more
sensitive experiments such as that of the Foucault pendulum.

The kind of quasi-gravitational effect I wish to describe here is something
that modifies the induced space–time metric on the (q + 1) dimensional worldsheet
of a q-brane in a higher dimensional background in a manner that approximates
the effect of true (q + 1)-dimensional gravity, even though its origin and precise
nature is essentially different. It is of particular potential interest in the currently
fashionable context of models that represent our four-dimensional universe as a
3-brane in a five-dimensional background, though in the kind of scenarios that are
most commonly envisaged the effect considered here would be excluded by the
usual assumption of symmetry between the two opposite sides of the 3-brane, while
even if the symmetry assumption were dropped [as has recently been proposed in
cases where theq-brane worldsheet is coupled to a background gauge (q + 1) form
(Battye and Carter, 2001; Carter and Uzan, 2001; Kehagias and Kiritsis, 1999)] the
quasi-gravitational effect (Carteret al., 2001) could still be overwhelmed by much
stronger effects of genuinely gravitational origin (just as the terrestrial centrifugal
effect is overwhelmed by the centrally directed genuinely gravitational attraction).

2. EQUATION OF MOTION OF BRANE WORLDSHEET

The effect to be considered here is derivable directly by perturbing the general-
purpose brane worldsheet equation of motion, which is given (Carter, 1995) in
terms of the second fundamental tensorK ρ

µν of the brane worldsheet and of the
corresponding worldsheet stress-energy density tensorT̄µν of the brane by

T̄µνK ρ
µν =⊥ρµ f̄ µ, (1)

where f̄ µ is the external force density, if any, acting on the brane, and⊥ρµ is the or-
thogonal projection tensor. The complementary (rankp+ 1) tangential projection
tensor

γ µν = gµν − ⊥µν , (2)

i.e. the first fundamental tensor, defines the tangential covariant differentiation
operator

∇̄µ = γ νµ∇ν , (3)
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whose action on the first fundamental tensor defines the second fundamental tensor
according to the specification

K ρ
µν = γ σν ∇̄µγ ρσ , (4)

which is such so as to ensure the Weingarten symmetry condition

K ρ
µν = K ρ

νµ, (5)

as a worldsheet integrability condition, as well as having the more obvious tan-
gentiality and orthogonality properties

K σ
µνγ

ρ
σ = 0=⊥λµ K ρ

λν , (6)

while its trace

K ρ = K µρ
µ = ∇̄νγ νρ (7)

inherits the simple worldsheet orthogonality property

γ ρσ K σ = 0. (8)

3. PERTURBED WORLDSHEET CONFIGURATION

The quasi-gravity effect to be considered occurs (in its simplest form) when
the total surface stress-energy tensorT̄µν is dominated by an isotropic (Dirac–
Nambu–Goto type) contribution specified by a large fixed tension, sayT∞, together
with a small additional contributionτµν arising from the effect of local fields on the
brane (representing the observable matter of the universe in brane-world scenarios)
in the form

T̄µν = −T∞γ µν + τµν , (9)

in the presence of an external force of the commonly occurring kind (including a
Magnus force on a string and a wind force on a sail) that is automatically orthogonal
to the worldsheetγ µν f̄ ν = 0 so that the orthogonal projection on the right-hand
side in (1) is superfluous. Then if the observable matter contributionτµν were
absent, the dynamical equation of motion (1) would reduce to the simple form

T∞K ρ = f̄ ρ. (10)

Starting from an almost uniform (low curvature) reference configuration of this
kind, one can consider an actual configuration that deviates from this because of the
presence of a matter distributionτµν confined within a lengthscale that is relatively
small (compared with the reference curvature scale) for which the dominant terms
in the dynamical equation obtained by perturbation of (1) can be seen to be given
by an expression of the form

T∞δK ρ = τµνK ρ
µν , (11)
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in which the perturbationδK ρ of the curvature is given in terms of the Dalembertian
wave operator̄h = ∇̄ν∇̄ν of the (q + 1) dimensional worldsheet metric and of the
surface orthogonal vector fieldξµ specifying the displacement of the worldsheet,
by an expression of the form

δK ρ ' h̄ξρ , (12)

which is obtained from the general curvature perturbation formula (Carter, 1995)
by retaining only the gradient terms of highest order, which are the ones that
dominate in the localized (short lengthscale) limit.

For a brane worldsheet matter distribution that is approximately specified
with respect to the relevant tangent rest frame unit vectorūµ (ūν ūν = −1) by a
stress-energy density tensor of the nonrelativistic form

τµν ' ρ̄ūµūν , (13)

in terms of a surface mass density ¯ρ whose space section volume integal determines
the corresponding total mass say,M , the resulting equation takes the form

T∞h̄ξρ ' ρ̄ūµūνK ρ
µν , (14)

in which owing to the staticity the (hyperbolic) Dalembertian operator will reduce
to a Laplacian operator (of elliptic type), so that for a (q − 2) spherically symmetric
distribution the solution will be expressible in terms of the radial distancer from
the center by an expression that forq ≥ 3 will have the power law form

T∞ξµ = − M

(q− 2)Ä[q−1]r q−2
aµ, (15)

in terms of the rest frame orthogonal worldsheet acceleration vectoraµ = ūν∇̄ν ūµ
given by

aρ = ūµūνK ρ
µν. (16)

For the familiar, experimentally accessible, case of an ordinary membrane, with
q = 2, there will be an analogous formula involving radial dependence of loga-
rithmic rather than power law type.

3.1. Quasi-gravitational Metric Perturbations

Under the conditions described in the preceeding section, the brane world-
sheet geometry characterized by the fundamental tensorγµν will be subject to
a corresponding perturbation̄hµν = δγµν , which will be given (Carter, 1995) in
terms of the second fundamental tensor of the unperturbed reference state by an
expression of the form

h̄µν = −K ρ
µνξρ. (17)
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This perturbation will have a time component

h̄00 = ūµūν h̄µν (18)

given by the formula

h̄00 = −2aρξρ , (19)

while the tracēhνν will be given by an expression of the analogous form

h̄νν = −2K ρξρ , (20)

Evaluating (19) explicitly using (37), one sees that it is reducible to an expression of
the standard (dimensionally generalized; Arkani-Hamedet al., 1999) Newtonian
form

h̄00 = 2G[q+1]M

r q−2
, (21)

with the relevant generalised Newton constant given by

G[q+1] = 1

(q − 2)Ä[q−1]T∞
aρaρ. (22)

Although this mechanism will thus effectively simulate Newtonian-type grav-
itational attraction in so far as its effect on nonrelativistic Keppler type orbits is
concerned, it leads to a value for the ratioh̄00/h̄νν that can be seen from (19) and
(20) to be given by (15) as

h̄00

h̄νν
= aρaρ

aνKν

, (23)

which will not in general agree with the prediction of Einstein’s theory. Although
the ensuing prediction for the relativistic behavior (e.g. of light deflection) will
thereby deviate from that of Einstein’s purely tensorial theory of gravity, it gives a
result that will be shown to be matchable by a more general theory of the Jordan–
Brans–Dicke type to be described in the next section.

4. JORDAN–BRANS–DICKE TYPE THEORIES

The action integral

I =
∫
L‖g‖1/2d(q+1)x, L = LD + LM, (24)

for a Jordan–Bran–Dicke-type scalar–tensor theory (Dicke, 1964) in a (q + 1) di-
mensional space–time, with metricgµν in a Dicke-type conformal gauge (meaning
one in which the weak equivalence principle is satisfied), is given by a Lagrangian
density consisting of a Dicke-type gravitational contributionLD involving a dila-
tonic scalar field8 as well as the metric, and an ordinary matter contributionLM
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that is independant of8, with the Dicke contribution given in terms of a coupling
constantωD by an expression of the form

LD =
1

2(q − 1)Ä[q−1]

(
8R− ωD

8
gµν8,µ8,ν

)
, (25)

whereR is the Ricci scalar for the metricgµν andÄ[q−1] is the surface area of
the unit (q − 1) sphere, which, for an ordinary four-dimensional space–time, with
space dimensionq = 3, will be given byÄ[2] = 4π .

In terms of the trace of the material stress energy density tensor

Tµν

M = 2
∂LM

gµν
− LMgµν , (26)

the scalar wave equation for such a theory will be given in terms of the Dalembertian
operatorh = ∇ν∇ν by

h8 = αDÄ
[q−1]Tν

Mν , (27)

in terms of a dilatonic coupling constantαD , which is given in terms of the original
Dicke constantωD by

1

αD
= ωD + q

q− 1
. (28)

To deal with the gravitational equations, it is convenient to express the dila-
tonic amplitude8 in terms of some fixed valuê8 and of a dimensionless scalar
field φ in the form

8 = e−2φ8̂ (29)

and to change to what is known as an Einstein gauge by a conformal transformation
gµν 7→ ĝµν that is specified by setting

gµν = e2σ ĝµν , (30)

where the fieldσ is given in terms ofφ by by the proportionality relation

2φ = (q − 1)σ. (31)

In terms of the Einstein type conformal gauge the action (24) will take the form

I =
∫
L̂‖̂g‖1/2 d(q+1)x, L̂ = L̂D + L̂L, (32)

with the matter contribution given by

L̂M = e(q+1)σLM, (33)
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while L̂D is given as the sum of an ordinary Einstein–Hilbert-type term and a linear
scalar field contribution in the form

L̂D =
8̂

2(q − 1)Ä[q−1]

(
R̂− 4

αD

ĝµνφ,µφ,ν

)
, (34)

whereR̂ is the Ricci scalar for the Einstein metriĉgµν andαD is the constant given
by (28), while the fixed amplitudê8 now acts as the inverse of the (dimensionally
generalised) Newton constant, which can be identified as

Ĝ[q+1] = 1

8̂
. (35)

In this reformulation there will be a matter stress energy density contribution given
by

T̂µ

Mν = e(q+1)σTµ

Mν (36)

whose trace will act as the source for the linear wave equation forφ, which will
be expressible in the form

ĥφ = −1

2
Ä[q−1]Ĝ[q+1]αDT̂ρ

Mρ , (37)

wherêh is the Dalembertian operator for the Einstein metricĝµν . The correspond-
ing Einstein-type gravitational equations will be expressible as

R̂µν − 1

2
R̂ ĝµν = 2

αD
(2φµφν − ĝµν ĝ

ρσφρφσ )+ (q − 1)Ä[q−1]Ĝ[q+1]T̂Mµν.

(38)

5. LINEARIZED LOCAL SCALAR–TENSOR
FIELD CONFIGURATIONS

Let us now consider the weak field, low source density, limit in which the
system can be linearized with respect to the dilatonic perturbation fieldφ and
the Einstein metric perturbation field̂hµν defined relative to a flat Minkowski
background metricηµν by setting

ĝµν = ηµν + ĥµν. (39)

Equation (37) forφ is already linear as it stands, while the corresponding linearized
Einstein equation for̂hµν is obtainable from (38) in the standard form

hĥµν = −2Ä[q−1]Ĝ[q+1]
(
(q − 1)̂TMµν − T̂ρ

Mρηµν
)
. (40)

The gravitational field that is directly measured by the observation of Keppler-
type orbits will not be given by this Einstein-type metricĝµν (to which, owing to
the involvement ofφ in the relevant stress energy tensorT̂µν

M , the usual equivalence
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principle does not apply) but by the original Dicke-type metricgµν , which will be
expressible analogously to (39) by

gµν = ηµν + hµν , (41)

with

hµν = ĥµν + 2σηµν , (42)

to linear order, by (30). Usng the relation (11), it can be seen, by combining the
wave equations (37) and (40), that the directly observable metric perturbationhµν
will be given, to linear order, by

hhµν = −2Ä[q−1]Ĝ[q+1]
(
(q − 1)TMµν + (1−1D)Tρ

Mρηµν
)
, (43)

in which the dilatonic deviation constant is given by

1D = 1

(q − 1)ωD + q
= αD

q − 1
. (44)

Because of the presence of the deviation constant1D, the coefficient̂G[q+1]

will not be quite the same as the effective Newtonian coupling constant G[q+1]

that will be observed in the static nonrelativistic limit for which, in terms of the
relevant rest frame unit vectoruµ (with uµuµ = −1), the stress-energy density
will be approximately of the form

Tµν

M = ρuµuν , (45)

in which ρ is the mass density, whose space volume integral will be identifiable
in this limit as the total massM . It can be seen that for a spherically symmetric
distribution the time component

h00 = uµuνhµν , (46)

of the metric perturbation will be given in terms of the radial distancer from the
center by an expression of the standard (dimensionally generalised; Arkani-Hamed
et al., 1999) Newtonian form

h00 =
2G[q+1] M

r q−2
, (47)

but with the effective gravitational coupling constant given by

G[q+1] = Ĝ[q+1]

(
1+ 1D

q− 2

)
. (48)

It can be seen that it will be related to the corresponding expression for the trace
hρρ of the metric perturbation by

hρρ =
2− (q + 1)1D

q − 2+1D
h00, (49)
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which is equivalent to

h00 = (q− 2)ωD + q − 1

2ωD + 1
hρρ. (50)

6. CONCLUSION

It can be seen that the ratio (50) can be matched by the simulation effect
leading to the corresponding ratio (23) if the relevant reference frame curvature
vectorKµ and the corresponding acceleration vectoraµ are related by

aρaρ = (q − 2)ωD + q − 1

2ωD + 1
K ρaρ , (51)

or equivalently by

aρKρ = 2+ (q+ 1)1D

q − 2+1D
aρKρ. (52)

This means that in the linear approximation we have been using, the quasi-
gravitational effect arising from the extrinsic curvature of the brane simulates
what would be predicted by a Jordan–Brans–Dicke theory withωD given by what
is obtained by solving (51), namely

ωD = (q− 1)aρKρ − aρaρ
2aνaν − (q − 2)aνKν

, (53)

which corresponds to a dilatonic deviation1D given by

1D = 2aρaρ + (2− q)aρKρ

(q + 1)aνaν + aνKν

. (54)

It is to be emphasized that the approximation presented here has been de-
rived only for static configurations in a linearized weak field limit, and cannot be
expected to remain accurate when stronger fields or significant deviations from
staticity are involved.
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